

Seat No.

HP-1603010702020700

M. Sc. (Sem.-II)
(CBCS) Examination
April - 2023
CT-7: Physics

(Space Physics)

Time : $2\frac{1}{2}$ Hours / Total Marks : 70

Instructions: Attempt all questions. The figure on right indicates marks.

1 Answer any **Seven** of the following:

- 14
- (a) What is gaseous escape for Earth's Atmosphere?
- (b) Which constituents are active in the IR part of the solar radiation spectrum?
- (c) Name the different parts of the neutral atmosphere based on its compositional change.
- (d) What is the "Coronal Mass Ejection"?
- (e) Write the chemical composition of the Sun.
- (f) Draw the energy level diagram of exited atomic oxygen.
- (g) What do you mean by "lapse rate"?
- (h) What is airglow?
- (i) What are the coldest and hottest region of the Earth's atmosphere?
- (j) Name the models for neutral atmosphere.
- 2 Answer any **Two** of the following:

14

- (a) Derive the expression explaining the hydrostatic equilibrium in the Earth's Atmosphere.
- (b) Explain "Enthalpy" and "Entropy" for atmosphere with examples.
- (c) Describe the atmospheric vertical structure -based on the temperature profile.

3	Answer the following:		14
	(a)	Describe the radio wave propagation and refraction in the	
		ionosphere using Snell's formula.	
	(b)	Explain the working of ionosonde. Draw the sample ionogram and discuss the critical frequency.	
		OR	
3	Answer the following:		14
	(a)	Explain how the radio wave is refracted by the ionosphere using Appleton-Hartree formula.	
	(b)	Derive the equation of Chapman's production function for the ionosphere and discuss in detail.	
4	Answer any Two of the following:		14
	(a)	Describe the morphology of the ionosphere in detail.	
	(b)	Explain what is geomagnetic cavity? Draw the various parts of the Earth's magnetosphere and discuss each in detail.	
	(c)	Describe the basic elements involved in the remote sensing of Earth's resources.	
5	Write short notes on any Two :		14
	(a)	Describe the production and loss mechanism of stratospheric ozone.	
	(b)	Energy interactions with the Earth surface features in terms of remote sensing.	
	(c)	Structure and Composition of the Sun.	

emission process.

(d)

Radiative balance in the atmosphere using absorption and